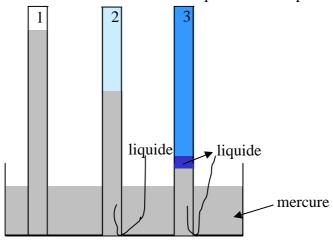
VAPORISATION et DEGRE d'HYGROMETRIE

1. Vaporisation dans un espace vide limité

En introduisant un liquide, celui-ci se vaporise immédiatement (vapeur sèche).

Dès que la quantité de liquide est importante, la vaporisation cesse (vapeur <u>saturante</u>), il y a un équilibre entre le liquide et le gaz.


liquide à 20°C	mercure	eau	alcool	éther
pression* de vapeur saturante en pascals	0,16	2303	5763	58158

*la pression atmosphérique est environ égale à 100000 Pa.

1 : pression de vapeur saturante du mercure (p≈0Pa, vide)

2 : pression de vapeur sèche du liquide (p)

3 : pression de vapeur saturante du liquide $(p_s>p)$

2. Vaporisation dans un espace limité rempli de gaz

En introduisant un liquide, celui-ci se vaporise.

loi de Dalton

Pour une température donnée, la <u>pression de vapeur saturante</u> d'un liquide est la même que la vapeur soit ou non mélangée à d'autres gaz.

application: HYGROMETRIE de l'AIR

3. Vaporisation à l'air libre : évaporation

La pression de vapeur d'eau p sera toujours inférieure à la pression de vapeur saturante p_s de la vapeur d'eau $(p < p_s)$.

C'est une disparition continue jusqu'à disparition du liquide.

L'évaporation prend de la chaleur au milieu extérieur (chaleur latente de vaporisation... L_v)

Exemples:

- sensation de froid quand on sort de l'eau ou quand on met de l'éther sur le bras.
- rafraichissement d'une maison par souffle d'air qui se refroidit au contact de l'eau.

La vitesse d'évaporation d'un liquide :

- •augmente avec la température
- •est proportionnelle à la surface de séparation entre le liquide et l'air
- •est proportionnelle à la différence de pression saturante et la pression de vapeur
- •est inversement proportionnel à la pression atmosphérique

$$m = \frac{p_s - p}{P_{atm}}$$

m représente la masse qui s'évapore par seconde par mètre carré et à température constante.

4. Ebullition

Alors que l'évaporation se produit en surface, l'ébullition est une vaporisation en profondeur.

5. HYGROMETRIE de l'AIR, point de rosée

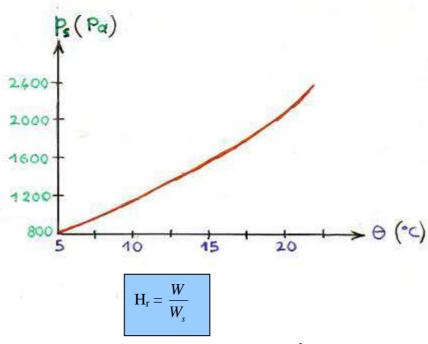
5_A. Composition de l'air

L'AIR est un mélange de gaz constituant l'atmosphère terrestre.

- diazote 78%
- dioxygène 21%
- gaz rares, dioxyde de carbone CO₂, vapeur d'eau H₂O.

5_B. Degré hygrométrique

a- <u>lois</u>


La proportion de vapeur d'eau dépend du <u>degré d'hygrométrie de l'air</u>, il est limité par la <u>pression de</u> vapeur saturante.

 $H_{\rm r} = \frac{p}{p_s}$

p: pression de la vapeur d'eau contenue dans l'air (Pa)

p_s: pression de vapeur saturante (Pa)

H_r: degré hygrométrique exprimé en % (humidité relative)

W : masse de vapeur d'eau contenue dans l'air (g.m-3)

W_s: masse de vapeur d'eau correspondant à la saturation de l'air (<u>humidité absolue</u>)

température (°C) θ_r	5	8	11	14	16	20	25	30
$W_s (g.m^{-3})$	5,6	7	8,4	10,5	12	15	20	27

b- exemples

 $H_r = 0\%$: atmosphère parfaitement sèche, climat saharien.

H_r = 100%: atmosphère saturée d'humidité, climat équatorien.

 $40\% < H_r < 60\%$: atmosphère confortable.

5_c. Point de rosée

a- définition

Quand $H_r = 100\%$, de la vapeur d'eau passe à l'état liquide, il y a *condensation*.

b- exemples

- Condensation de surface sur les parois froides...(mur, vitrage, canalisation d'eau froide,...)
- Lors d'une <u>chute de neige</u>, alors que $H_r = 100\%$, l'air froid peut contenir moins de la moitié de quantité d'eau en suspension que dans le même volume d'air chaud au-dessus d'un <u>désert.</u>
- A la <u>limite de saturation</u>, l'eau continue à s'évaporer, mais elle doit remplacer une quantité égale de vapeur d'eau déjà présente...qui se condense.
- La <u>rosée du matin</u> qui perle sur une fleur, un ciel dégagé a favorisé un vif refroidissement au cours de la nuit et ce refroidissement a provoqué la condensation de la vapeur contenue dans l'air environnant.

Exercice 1:

```
\begin{split} (\underline{\textit{pression atmosphérique normale}}: P_{atm} = 1 atm = 101325 Pa = 76 cm \ de \ mercure) \\ \rho_{mercure} = 13546 \ kg.m^{-3} \\ P_{atm} = \ p_{diazote} + p_{dioxygène} + \Sigma p_i + p_{vapeur \ d'eau} \\ p_i : pression \ des \ autre \ gaz \ de \ l'air \end{split}
```

La pression de vapeur d'eau présente dans un local est égale à 8 mm de mercure.

Exprimer cette pression en:

- cm de mercure
- pascals
- atmosphère
- bar $(1bar = 10^5 Pa)$
- millibars (mbar) et hectopascals (hPa)

Exercice 2:

Dans un local à 20°C la pression de vapeur d'eau est égale à 8 mm de mercure.

- 1) Calculer le degré hygrométrique H_r et la masse de vapeur d'eau W contenue dans l'air.
- 2) A quelle température l'air du local sera saturé de vapeur d'eau ?

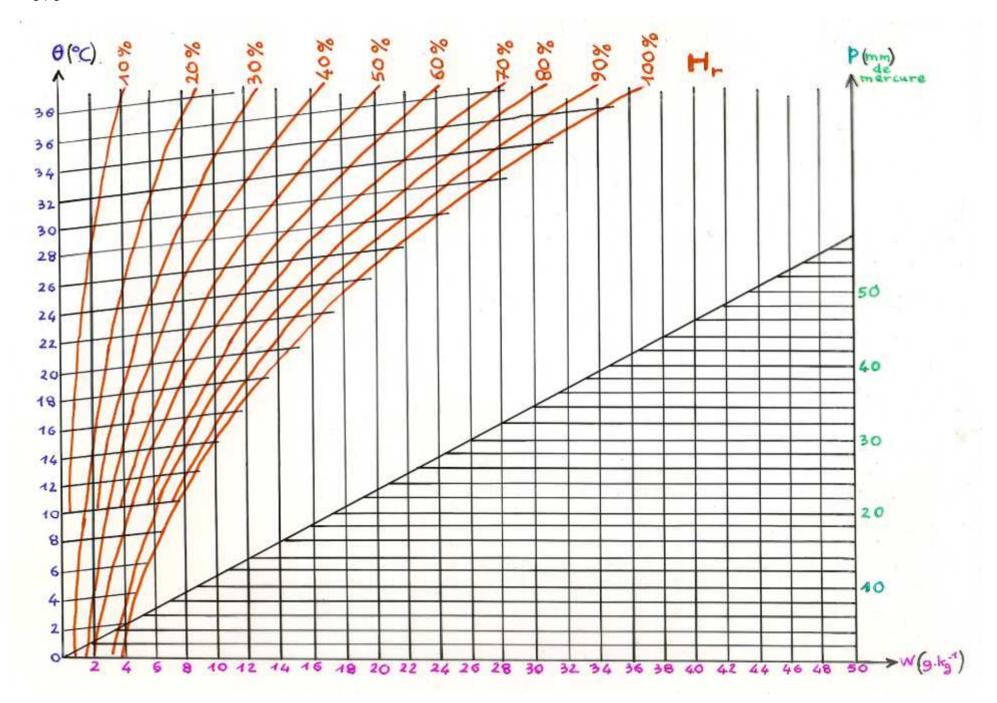
Exercice 3:

Sachant que dans une pièce à 16° C, $H_r = 90\%$

- 1) Quelle est la pression de vapeur d'eau dans cette pièce ?
- 2) A quelle température l'air de cette pièce sera-t-il saturé d'humidité ?

Exercice 4:

En utilisant le **DIAGRAMME DE L'AIR HUMIDE** (diagramme de Mollier), pour de l'air à 20°C :


- 1) Si $H_r = 80\%$, à quelle température apparaîtra la condensation ? En déduire la pression de vapeur d'eau.
- 2) Si p = 7,5 mm, à quelle température apparaîtra la condensation ? En déduire la teneur en vapeur d'eau, ainsi que le taux d'humidité. (on peut vérifier ces résultats par le calcul)

Exercice 5: (ou on retrouve la loi des gaz parfaits : P.V = n.R.T et m = n.M)

- 1) A 20°C, sachant que p_s est égale à 2303 Pa, calculer W_s.
- 2) A 20° C, dans un local de 1000 m^3 , sachant que $H_r = 70\%$, après avoir calculé la pression de vapeur d'eau P, calculer la masse de vapeur d'eau présente dans ce local.

```
Extraits BTS: - Thermique: b 1994 2) – eec 2008 condensation 1)2) – eb 1998 (\theta_{si1}simple vitrage: \approx10,8°C et \theta_{si2}double vitrage: \approx15,1°C) et 2005 (\theta_{siA} \approx 4,3°Cet \theta_{siB} \approx15,8°C)
```

6. Diagramme de l'air humide

